p-Biharmonic Maps and Warped Product Manifolds

Bouchra Merdji¹, Ahmed Mohammed Cherif²

¹University Mustapha Stambouli, Mascara, Algeria

²University Mustapha Stambouli, Mascara, Algeria

bouchra.merdji@univ-mascara.dz, med cherif ahmed@yahoo.fr

Theorem 1. Let (M, g) and (N, h) be two Riemannian manifolds. We denote by

$$\begin{aligned} \mathbf{i}_{x_0} &: & (N,h) &\to & (M\times_{f^2}N,G_{f^2}), \\ & y &\mapsto & (x_0,y) \end{aligned}$$

the inclusion map of N at the $x_0 \in M$ level in $M \times_{f^2} N$. In the following, we characterize the p-biharmonicity of \mathbf{i}_{x_0} in terms of the function f. The p-bitension field of the inclusion \mathbf{i}_{x_0} is given by

$$\tau_{2,p}(i_{x_0}) = -\frac{n^p}{8} f^{2(p-2)}(x_0) \left(\text{grad} | \text{grad} f^2|^2, 0 \right) \circ \mathbf{i}_{x_0} -\frac{(p-2)n^p}{8} f^{2(p-2)}(x_0) | \text{grad} f^2|_{x_0}^2 (\text{grad} f^2, 0) \circ \mathbf{i}_{x_0}.$$

The analogue of Theorem 1 was established in (see, [1])

Corollary 1. The inclusion map \mathbf{i}_{x_0} is p-biharmonic non p-harmonic if and only if x_0 is not a critical point for f^2 and at x_0

grad
$$|\operatorname{grad} f^2|^2 + (p-2)|\operatorname{grad} f^2|^2 \operatorname{grad} f^2 = 0.$$
 (1)

In the case where $|\operatorname{grad} f^2|^2$ is a function of f^2 , we have the following result.

Corollary 2. Let $f \in C^{\infty}(M)$ be a smooth positive function such that $|\operatorname{grad} f^2|^2 = e^{(2-p)f^2}$ on M. Then, every inclusion \mathbf{i}_{x_0} is p-biharmonic non p-harmonic map.

By using the above results, we obtain some new examples of *p*-biharmonic non *p*-harmonic maps for $p \ge 2$.

Example 1. Consider the inclusion map $\mathbf{i}_{x_0} : (N,h) \to (\mathbb{R} \times_{f^2} N, G_{f^2})$. Assume that $a = (f^2)'(x_0) > 0$ and $b = (f^2)''(x_0) \leq 0$. By Corollary 1, \mathbf{i}_{x_0} is *p*-biharmonic non *p*-harmonic if and only if $p = 2 - \frac{2b}{a}$.

Example 2. Take M to be $(\frac{2}{p-2}, \infty) \times \mathbb{R}^{m-1}$ equipped by the Riemannian metric $g = dt^2 + dx_1^2 + \ldots + dx_{m-1}^2$. According to Corollary 2, every inclusion map $\mathbf{i}_{x_0} : (N, h) \to (M \times_{f^2} N, G_{f^2})$ is *p*-biharmonic non *p*-harmonic, where the function f^2 is given by

$$f^{2}(t,x) = \frac{1}{2-p} \ln\left(\frac{4}{(p-2)^{2}t^{2}}\right), \quad \forall (t,x) \in M.$$

Remark 1. Let (M, g) and (N, h) be two Riemannian manifolds. The inclusion map \mathbf{j}_{y_0} : $(M, g) \to (M \times_{f^2} N, G_{f^2})$ defined by $\mathbf{j}_{y_0}(x) = (x, y_0)$ is *p*-harmonic for all $y_0 \in N$, because it is always a totally geodesic map, thus $\tau(\mathbf{j}_{y_0}) = 0$, and we have $|d\mathbf{j}_{y_0}|^2 = m$, where *m* is the dimension of (M, g).

 Balmuş A., Montaldo S., Oniciuc C. Biharmonic maps between warped product manifolds. J. Geom. Phys., 2007, 57, 449–466.